A Markov chain can be used to model the evolution of a sequence of random events where probabilities for each depend solely on the previous event. Once a state in the sequence is observed, previous values are no longer relevant for the prediction of future values. Markov chains have many applications for modeling real-world phenomena in a myriad of disciplines including physics, biology, chemistry, queueing, and information theory. More recently, they are being recognized as important tools in the world of artificial intelligence (AI) where algorithms are designed to make intelligent decisions based on context and without human input. Markov chains can be particularly useful for natural language processing and generative AI algorithms where the respective goals are to make predictions and to create new data in the form or, for example, new text or images. In this course, we will explore examples of both. While generative AI models are generally far more complex than Markov chains, the study of the latter provides an important foundation for the former. Additionally, Markov chains provide the basis for a powerful class of so-called Markov chain Monte Carlo (MCMC) algorithms that can be used to sample values from complex probability distributions used in AI and beyond.

Entdecken Sie neue Fähigkeiten mit 30% Rabatt auf Kurse von Branchenexperten. Jetzt sparen.


Discrete-Time Markov Chains and Monte Carlo Methods
Dieser Kurs ist Teil von Spezialisierung fĂźr Foundations of Probability and Statistics

Dozent: Jem Corcoran
Bei enthalten
Empfohlene Erfahrung
Was Sie lernen werden
Analyze long-term behavior of Markov processes for the purposes of both prediction and understanding equilibrium in dynamic stochastic systems
Apply Markov decision processes to solve problems involving uncertainty and sequential decision-making
Simulate data from complex probability distributions using Markov chain Monte Carlo algorithms
Kompetenzen, die Sie erwerben
- Kategorie: Generative AI Agents
- Kategorie: Mathematical Modeling
- Kategorie: Artificial Intelligence
- Kategorie: Statistical Modeling
- Kategorie: Machine Learning Algorithms
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufĂźgen
August 2025
15 Aufgaben
Erfahren Sie, wie Mitarbeiter fĂźhrender Unternehmen gefragte Kompetenzen erwerben.

Erweitern Sie Ihre Fachkenntnisse
- Lernen Sie neue Konzepte von Branchenexperten
- Gewinnen Sie ein Grundverständnis bestimmter Themen oder Tools
- Erwerben Sie berufsrelevante Kompetenzen durch praktische Projekte
- Erwerben Sie ein Berufszertifikat zur Vorlage

In diesem Kurs gibt es 6 Module
Welcome to the course! This module contains logistical information to get you started!
Das ist alles enthalten
7 LektĂźren4 Unbewertete Labore
In this module we will review definitions and basic computations of conditional probabilities. We will then define a Markov chain and its associated transition probability matrix and learn how to do many basic calculations. We will then tackle more advanced calculations involving absorbing states and techniques for putting a longer history into a Markov framework!
Das ist alles enthalten
12 Videos5 Aufgaben2 Programmieraufgaben
What happens if you run a Markov chain out for a "very long time"? In many cases, it turns out that the chain will settle into a sort of "equilibrium" or "limiting distribution" where you will find it in various states with various fixed probabilities. In this Module, we will define communication classes, recurrence, and periodicity properties for Markov chains with the ultimate goal of being able to answer existence and uniqueness questions about limiting distributions!
Das ist alles enthalten
9 Videos3 Aufgaben2 Programmieraufgaben
In this Module, we will define what is meant by a "stationary" distribution for a Markov chain. You will learn how it relates to the limiting distribution discussed in the previous Module. You will also spend time learning about the very powerful "first-step analysis" technique for solving many, otherwise intractable, problems of interest surrounding Markov chains. We will discuss rates of convergence for a Markov chain to settle into its "stationary mode", and just maybe we'll give a monkey a keyboard and hope for the best!
Das ist alles enthalten
11 Videos3 Aufgaben2 Programmieraufgaben
In this Module we explore several options for simulating values from discrete and continuous distributions. Several of the algorithms we consider will involve creating a Markov chain with a stationary or limiting distribution that is equivalent to the "target" distribution of interest. This Module includes the inverse cdf method, the accept-reject algorithm, the Metropolis-Hastings algorithm, the Gibbs sampler, and a brief introduction to "perfect sampling".
Das ist alles enthalten
13 Videos2 Aufgaben2 Programmieraufgaben4 Unbewertete Labore
In reinforcement learning, an "agent" learns to make decisions in an environment through receiving rewards or punishments for taking various actions. A Markov decision process (MDP) is reinforcement learning where, given the current state of the environment and the agent's current action, past states and actions used to get the agent to that point are irrelevant. In this Module, we learn about the famous "Bellman equation", which is used to recursively assign rewards to various states and how to use it in order to find an optimal strategy for the agent!
Das ist alles enthalten
5 Videos2 Aufgaben2 Programmieraufgaben4 Unbewertete Labore
Erwerben Sie ein Karrierezertifikat.
FĂźgen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Auf einen Abschluss hinarbeiten
Dieses Kurs ist Teil des/der folgenden Studiengangs/Studiengänge, die von University of Colorado Boulderangeboten werden. Wenn Sie zugelassen werden und sich immatrikulieren, kÜnnen Ihre abgeschlossenen Kurse auf Ihren Studienabschluss angerechnet werden und Ihre Fortschritte kÜnnen mit Ihnen ßbertragen werden.š
ÂDozent

Mehr von Probability and Statistics entdecken
- Status: Kostenloser Testzeitraum
University of California, Santa Cruz
- Status: Kostenloser Testzeitraum
Illinois Tech
- Status: Kostenloser Testzeitraum
University of California, Santa Cruz
EIT Digital
Warum entscheiden sich Menschen fĂźr Coursera fĂźr ihre Karriere?





Neue KarrieremĂśglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten â 100 % online
SchlieĂen Sie sich mehr als 3.400Â Unternehmen in aller Welt an, die sich fĂźr Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
To access the course materials, assignments and to earn a Certificate, you will need to purchase the Certificate experience when you enroll in a course. You can try a Free Trial instead, or apply for Financial Aid. The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we donât give refunds, but you can cancel your subscription at any time. See our full refund policy.
Weitere Fragen
Finanzielle UnterstĂźtzung verfĂźgbar,