Northeastern University
Machine Learning and Data Analytics Part 1

Diese kurs ist nicht verfügbar in Deutsch (Deutschland)

Wir übersetzen es in weitere Sprachen.
Northeastern University

Machine Learning and Data Analytics Part 1

Bei Coursera Plus enthalten

Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen
Verschaffen Sie sich einen Einblick in ein Thema und lernen Sie die Grundlagen.
Stufe Mittel
Einige einschlägige Kenntnisse erforderlich
2 Wochen zu vervollständigen
unter 10 Stunden pro Woche
Flexibler Zeitplan
In Ihrem eigenen Lerntempo lernen

Kompetenzen, die Sie erwerben

  • Kategorie: Statistical Analysis
  • Kategorie: Machine Learning
  • Kategorie: Data Analysis
  • Kategorie: Classification And Regression Tree (CART)
  • Kategorie: Data Visualization Software
  • Kategorie: Feature Engineering
  • Kategorie: Machine Learning Algorithms
  • Kategorie: Exploratory Data Analysis
  • Kategorie: Predictive Modeling
  • Kategorie: Regression Analysis
  • Kategorie: Data Mining
  • Kategorie: Dimensionality Reduction
  • Kategorie: Supervised Learning

Wichtige Details

Zertifikat zur Vorlage

Zu Ihrem LinkedIn-Profil hinzufügen

Kürzlich aktualisiert!

Juli 2025

Bewertungen

7 Aufgaben

Unterrichtet in Englisch

Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

 Logos von Petrobras, TATA, Danone, Capgemini, P&G und L'Oreal

In diesem Kurs gibt es 7 Module

In this module, participants will explore essential data concepts across domains, understanding diverse data types, attributes, and features. They will grasp the fundamental principles, methodologies, and scope of data mining.

Das ist alles enthalten

4 Videos9 Lektüren1 Aufgabe

This module aims to impart a comprehensive understanding of data concepts, spanning various domains. Participants will learn to differentiate between different data types, attributes, and features. They will explore fundamental principles and methodologies of data mining

Das ist alles enthalten

3 Videos13 Lektüren1 Aufgabe

Throughout this module, we will jump into the realm of dimensionality reduction, a technique for simplifying complex datasets to facilitate efficient analysis and visualization. By implementing dimensionality reduction methods such as Principal Component Analysis (PCA) and t-Distributed Stochastic Neighbor Embedding (t-SNE), we gain insight into how to effectively reduce the number of features while preserving essential information. We'll also learn to select and apply the most suitable dimensionality reduction techniques based on data types and analytical goals.

Das ist alles enthalten

5 Videos11 Lektüren1 Aufgabe

In this module, we learn the concept of the Bias-Variance Trade-Off in machine learning. Striving for models that generalize well requires navigating the delicate balance between bias and variance to avoid underfitting and overfitting. Bias prevents the error from oversimplifying a complex problem, while variance quantifies the model's sensitivity to different training data subsets. We will explore strategies to combat bias and variance in developing models that strike the right balance between accuracy and generalization. Transitioning to regression metrics, we will look at practical tools used to measure and evaluate model performance in regression tasks, focusing on metrics such as Root Mean Squared Error (RMSE). Finally, we will navigate the landscape of assessing model performance in binary classification tasks, exploring advanced measures like the F1 score, Matthews Correlation Coefficient (MCC), propensity scores, and the AUC-ROC curve.

Das ist alles enthalten

5 Videos9 Lektüren1 Aufgabe

In this module, we will continue to explore key learning objectives to empower your understanding and application of essential techniques in machine learning. By mastering foundational classification algorithms such as KNN, LDA, and logistic regression, you'll gain the tools to tackle practical data mining tasks effectively. Through real-world dataset analysis, you'll learn to implement these algorithms with precision and insight, enabling you to extract valuable insights and make informed decisions in various domains. Join us this week to unlock the potential of classification algorithms and elevate your machine learning skills.

Das ist alles enthalten

6 Videos9 Lektüren1 Aufgabe

Embark on a captivating journey through the world of classification algorithms in this module. We’ll dive into the intricacies of foundational techniques like decision trees, Bayes classifier, ensemble learning, and more as you learn to navigate real-world dataset analysis with confidence. After we uncover the power of the Bayes classifier, we will transition seamlessly into tackling regression tasks with decision trees. Finally, we will dive into the realm of ensemble learning. Over the course of the module, you’ll become equipped with the knowledge and skills to implement these algorithms effectively, propelling your data mining endeavors to new heights.

Das ist alles enthalten

4 Videos12 Lektüren1 Aufgabe

In this module, we get into essential regression techniques, equipping you with the skills to analyze and model real-world data. Through hands-on lessons, learners will grasp the fundamentals of linear, multiple, and logistic regression, gaining proficiency in implementing these methods on diverse datasets for predictive modeling. Lessons cover topics ranging from understanding linear regression and calculating coefficients to exploring polynomial regression and feature selection. By the end of this module, students will possess a comprehensive understanding of regression techniques, enabling them to make informed decisions and generate valuable insights from data.

Das ist alles enthalten

3 Videos5 Lektüren1 Aufgabe

Erwerben Sie ein Karrierezertifikat.

Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.

Dozent

Chinthaka Pathum Dinesh  Herath Gedara
Northeastern University
2 Kurse8 Lernende

von

Mehr von Data Analysis entdecken

Warum entscheiden sich Menschen für Coursera für ihre Karriere?

Felipe M.
Lernender seit 2018
„Es ist eine großartige Erfahrung, in meinem eigenen Tempo zu lernen. Ich kann lernen, wenn ich Zeit und Nerven dazu habe.“
Jennifer J.
Lernender seit 2020
„Bei einem spannenden neuen Projekt konnte ich die neuen Kenntnisse und Kompetenzen aus den Kursen direkt bei der Arbeit anwenden.“
Larry W.
Lernender seit 2021
„Wenn mir Kurse zu Themen fehlen, die meine Universität nicht anbietet, ist Coursera mit die beste Alternative.“
Chaitanya A.
„Man lernt nicht nur, um bei der Arbeit besser zu werden. Es geht noch um viel mehr. Bei Coursera kann ich ohne Grenzen lernen.“
Coursera Plus

Neue Karrieremöglichkeiten mit Coursera Plus

Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten

Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.

Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online

Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.

Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.

Häufig gestellte Fragen