This course will guide you through the essential principles of algorithms and their significance in computational problem-solving. You'll begin by exploring what an algorithm is, its core characteristics, and how it applies to real-world scenarios—from simple everyday tasks to complex computing challenges. As you progress, you will learn about the critical role algorithms play in improving efficiency and scalability across various fields. We’ll break down key concepts such as algorithmic complexity, helping you evaluate the efficiency of different approaches, which will ultimately guide your decision-making.



Kompetenzen, die Sie erwerben
- Kategorie: Network Analysis
- Kategorie: Algorithms
- Kategorie: Data Structures
- Kategorie: Computational Thinking
- Kategorie: Theoretical Computer Science
- Kategorie: Probability & Statistics
- Kategorie: Analysis
- Kategorie: Probability
Wichtige Details

Zu Ihrem LinkedIn-Profil hinzufügen
Juli 2025
32 Aufgaben
Erfahren Sie, wie Mitarbeiter führender Unternehmen gefragte Kompetenzen erwerben.

In diesem Kurs gibt es 6 Module
In this module, you will master dynamic programming principles such as memoization and tabulation to optimize complex problems. You will learn how to apply these techniques by implementing the Bellman-Ford algorithm and solving optimization challenges. Additionally, you will see how to use dynamic programming and backtracking to tackle puzzles and constraint-satisfaction problems, with opportunities to integrate reinforcement learning concepts.
Das ist alles enthalten
2 Videos16 Lektüren5 Aufgaben2 App-Elemente
In this module you will explore network flow fundamentals and the max-flow min-cut theorem and their practical applications. You will master key algorithms such as Ford-Fulkerson and Push-Relabel to solve network flow problems. These techniques will be applied to real-world challenges like bipartite matching and project selection, providing a strong foundation in network optimization.
Das ist alles enthalten
1 Video16 Lektüren5 Aufgaben
In this module, you will gain a deep understanding of P, NP, and NP-Completeness, including how to classify and differentiate these problem types. You will master techniques for proving NP-Completeness and identifying NP-Hard problems. Additionally, you will develop and apply approximation algorithms and heuristics to tackle intractable problems, focusing on efficiency and trade-offs in complex problem-solving.
Das ist alles enthalten
13 Lektüren5 Aufgaben1 App-Element
In this module, you will master the fundamentals of Bayes' Rule, including understanding its components such as prior, likelihood, posterior, and evidence. You will learn how to apply Bayes' Rule to solve probability problems and update prior information with new evidence. Additionally, you will employ Bayesian inference to analyze data.
Das ist alles enthalten
13 Lektüren5 Aufgaben
In this module, you will explore the role of approximation algorithms in addressing NP-hard optimization problems by seeking near-optimal solutions within a practical time frame. You will learn to evaluate the performance of these algorithms using performance ratios to gauge their proximity to the optimal solution. Through examples such as the Vertex Cover, Traveling Salesman, Set Covering, and Subset Sum Problems, you will gain hands-on experience in applying approximation algorithms.
Das ist alles enthalten
17 Lektüren7 Aufgaben
In this module, you will delve into the principles and motivations behind randomized algorithms, understanding the key differences between deterministic and randomized approaches. You will analyze randomized sorting and searching algorithms, such as randomized quicksort and randomized binary search, to assess their efficiency and reliability. Additionally, you will explore randomized data structures like skip lists and hash tables, evaluating their performance advantages.
Das ist alles enthalten
14 Lektüren5 Aufgaben
Erwerben Sie ein Karrierezertifikat.
Fügen Sie dieses Zeugnis Ihrem LinkedIn-Profil, Lebenslauf oder CV hinzu. Teilen Sie sie in Social Media und in Ihrer Leistungsbeurteilung.
Dozent

Mehr von Data Analysis entdecken
- Status: Kostenlos
Princeton University
- Status: Vorschau
Northeastern University
- Status: Vorschau
Clemson University
- Status: Kostenloser Testzeitraum
Codio
Warum entscheiden sich Menschen für Coursera für ihre Karriere?





Neue Karrieremöglichkeiten mit Coursera Plus
Unbegrenzter Zugang zu 10,000+ Weltklasse-Kursen, praktischen Projekten und berufsqualifizierenden Zertifikatsprogrammen - alles in Ihrem Abonnement enthalten
Bringen Sie Ihre Karriere mit einem Online-Abschluss voran.
Erwerben Sie einen Abschluss von erstklassigen Universitäten – 100 % online
Schließen Sie sich mehr als 3.400 Unternehmen in aller Welt an, die sich für Coursera for Business entschieden haben.
Schulen Sie Ihre Mitarbeiter*innen, um sich in der digitalen Wirtschaft zu behaupten.
Häufig gestellte Fragen
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you purchase a Certificate you get access to all course materials, including graded assignments. Upon completing the course, your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
You will be eligible for a full refund until two weeks after your payment date, or (for courses that have just launched) until two weeks after the first session of the course begins, whichever is later. You cannot receive a refund once you’ve earned a Course Certificate, even if you complete the course within the two-week refund period. See our full refund policy.
Weitere Fragen
Finanzielle Unterstützung verfügbar,