Northeastern University
Data Management for Analytics Part 1

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Northeastern University

Data Management for Analytics Part 1

Xuemin Jin

Instructeur : Xuemin Jin

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
9 heures à compléter
Planning flexible
Apprenez à votre propre rythme
Préparer un diplôme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
9 heures à compléter
Planning flexible
Apprenez à votre propre rythme
Préparer un diplôme

Compétences que vous acquerrez

  • Catégorie : Data Quality
  • Catégorie : Relational Databases
  • Catégorie : Object Oriented Design
  • Catégorie : Data Integrity
  • Catégorie : Database Management Systems
  • Catégorie : Database Systems
  • Catégorie : Data Management
  • Catégorie : Data Modeling
  • Catégorie : Data Governance
  • Catégorie : Database Design
  • Catégorie : Metadata Management
  • Catégorie : Databases
  • Catégorie : Unified Modeling Language
  • Catégorie : Data Architecture

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

juillet 2025

Évaluations

29 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Il y a 7 modules dans ce cours

In this module, we will introduce the fundamental concepts of database management, review applications of database technology, and define key concepts. We will also contrast the file-based approach to data management with the database approach. Finally, we will examine the elements of a database system and the advantages of database design.

Inclus

3 vidéos7 lectures4 devoirs

In this module, we take a quick look at what is under the hood of a database management system. We will examine the key components of DBMS architecture and how these components work together for data storage, processing, and management. We also check how DBMSs can be categorized based on data models, degree of simultaneous access, architecture, and usage.

Inclus

3 lectures3 devoirs

In this module, we first review the database design process from conceptual and logical to physical database design and elaborate on the data requirements of a business process. We then introduce the Entity Relationship (ER) model for conceptual data modeling. The fundamental building blocks of the ER model include entity types, attribute types, and relationship types. We discuss attribute type details such as domains, key attribute types, simple versus composite attribute types, single-valued versus multi-valued attribute types, and derived attribute types. For relationship types, we also examine the degree and roles, cardinalities, weak entity types, and ternary relationship types. Various examples are included for clarification.

Inclus

1 vidéo5 lectures4 devoirs

In this module, we will learn three additional semantic data modeling concepts: specialization/generalization, categorization, and aggregation. These concepts enhance and extend the ER model discussed in the previous module. We will introduce an alternative conceptual model: the Unified Modeling Language (UML) class diagram. The UML is a modeling language that assists in the specification, visualization, construction, and documentation of artifacts of a software system. The UML can offer case diagrams, sequence diagrams, package diagrams, deployment diagrams, etc. Here we use the UML for conceptual data modeling.

Inclus

1 vidéo3 lectures3 devoirs

In this module, we focus on some organizational aspects of data management, including the DBMS catalog, the roles of metadata, and metadata modeling. We also discuss data quality, data governance, and different roles in data management. By the end of this module, you will understand the proper management of data and the corresponding data definitions. Data management entails proper management of data and the corresponding data definitions or metadata. The objective of data management is to ensure that (meta-)data is of good quality, and thus a key resource, for data analytics tasks and effective and efficient managerial decision-making.

Inclus

5 lectures5 devoirs

As discussed in the previous modules, designing a database takes multiple steps. Once the conceptual data model is finalized, the next step is to map the conceptual data model to a logical data model by the database designer during the logical design step. Note that, unlike the conceptual data model, the logical data model is associated with the data model used by the implementation DBMS environment. In other words, a logical data model is intended for a specific type of DBMS. Since the top ten DBMSs in use are usually dominated by relational DBMSs such as Oracle, MySQL (open-source), Microsoft SQL Server, etc., we will focus on the relational model that can be used as a logical data model for relational DBMSs. The relational model is a formal data model with a sound mathematical foundation, based on set theory and first-order predicate logic. Unlike the ER and EER models, the relational model has no standard graphical representation, which makes it unsuitable as a conceptual data model. Given its solid theoretical underpinning, the relational model is commonly adopted to build both logical and internal data models. In this module, we are concerned with the definitions of relational models that can be used as a logical data model and/or an internal model for relational DBMSs such as Oracle and Microsoft SQL servers. The relational model is introduced as a formal data model. Different types of keys are defined, and their roles are specified along with relational constraints. Students will learn the relational model as a logical data model. The mapping of a conceptual ER model to a relational model is explained in detail, including the mapping of entity types, binary one-to-one relationship types, binary one-to-many relationship types, binary many-to-many relationship types, unary relationship types, n-nary relations types, multi-valued attribute types, and weak entity types.

Inclus

2 vidéos7 lectures5 devoirs

This module first presents an overview of the insertion, deletion, and update anomalies in an unnormalized relational model and discusses informal normalization guidelines. Two key concepts used in the normal forms are defined and examined: functional dependency and prime attribute type along with various special cases of function dependency, including full versus partial, transitive, trivial, and multivalued dependencies. The process and the formal procedures for the normalization of a relational model are discussed in detail via the first normal form (1 NF), the second normal form (2 NF), the third normal form (3 NF), the Boyce-Codd normal form (BCNF), and the fourth normal form (4 NF).

Inclus

1 vidéo6 lectures5 devoirs

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Préparer un diplôme

Ce site cours fait partie du (des) programme(s) diplômant(s) suivant(s) proposé(s) par Northeastern University . Si vous êtes admis et que vous vous inscrivez, les cours que vous avez suivis peuvent compter pour l'apprentissage de votre diplôme et vos progrès peuvent être transférés avec vous.¹

 

Instructeur

Xuemin Jin
Northeastern University
4 Cours447 apprenants

Offert par

En savoir plus sur Software Development

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions