This beginner-friendly course on reinforcement learning equips you with the foundational and practical knowledge needed to understand and apply key RL concepts in real-world scenarios. Start by exploring what reinforcement learning is, why it matters, and how it differs from supervised and unsupervised learning. Learn essential terms and core principles through relatable examples. Dive deeper into the mechanics of decision-making with the Markov Decision Process (MDP), the backbone of RL. Gain practical experience by observing step-by-step demos that show how agents interact with environments to learn optimal behaviors.



Expérience recommandée
Ce que vous apprendrez
Understand the fundamentals of reinforcement learning and its real-world applications
Distinguish reinforcement learning from supervised and unsupervised learning
Learn core concepts like the Markov Decision Process (MDP) for decision-making
Observe how agents learn through environment interaction using step-by-step demos
Compétences que vous acquerrez
- Catégorie : Applied Machine Learning
- Catégorie : Supervised Learning
- Catégorie : Unsupervised Learning
- Catégorie : Machine Learning
- Catégorie : Automation
- Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
- Catégorie : Markov Model
- Catégorie : Reinforcement Learning
- Catégorie : Agentic systems
Détails à connaître

Ajouter à votre profil LinkedIn
juillet 2025
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Il y a 2 modules dans ce cours
Explore the foundations of reinforcement learning in this beginner-friendly course. Understand what reinforcement learning is, why it matters, and how it differs from supervised and unsupervised learning. Learn key concepts and important terms through relatable examples that demonstrate real-world applications. Ideal for learners aiming to build a strong base in AI, machine learning, and decision-making systems.
Inclus
6 vidéos1 lecture3 devoirs
Explore core reinforcement learning concepts in this hands-on course. Understand the Markov Decision Process (MDP) and how it forms the backbone of decision-making in RL. Watch reinforcement learning in action through step-by-step demos that show how agents learn from environments. Ideal for learners looking to gain practical insights into how reinforcement learning works in real-world scenarios.
Inclus
4 vidéos3 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
Instructeur

Offert par
En savoir plus sur Data Analysis
- Statut : Essai gratuit
University of Alberta
- Statut : Essai gratuit
University of Alberta
- Statut : Essai gratuit
University of Alberta
- Statut : Essai gratuit
New York University
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Reinforcement in training refers to the process of encouraging desired behaviors through rewards or penalties, guiding the learning process.
The main purpose is to enable an agent to learn optimal behavior by interacting with an environment and receiving feedback in the form of rewards.
The four key components are: the agent, the environment, actions, and rewards.
Plus de questions
Aide financière disponible,