Northeastern University
Machine Learning with Small Data Part 1

Vente anticipée ! Débloquez plus de 10 000 cours de Google, Microsoft et autres pour 160 €/an. Économisez maintenant.

Ce cours n'est pas disponible en Français (France)

Nous sommes actuellement en train de le traduire dans plus de langues.
Northeastern University

Machine Learning with Small Data Part 1

Sarah Ostadabbas

Instructeur : Sarah Ostadabbas

Inclus avec Coursera Plus

Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme
Obtenez un aperçu d'un sujet et apprenez les principes fondamentaux.
1 semaine à compléter
à 10 heures par semaine
Planning flexible
Apprenez à votre propre rythme

Compétences que vous acquerrez

  • Catégorie : Unsupervised Learning
  • Catégorie : Artificial Intelligence and Machine Learning (AI/ML)
  • Catégorie : Small Data
  • Catégorie : Machine Learning
  • Catégorie : Deep Learning
  • Catégorie : Supervised Learning
  • Catégorie : Computer Vision
  • Catégorie : Tensorflow
  • Catégorie : Generative AI
  • Catégorie : PyTorch (Machine Learning Library)
  • Catégorie : Applied Machine Learning

Détails à connaître

Certificat partageable

Ajouter à votre profil LinkedIn

Récemment mis à jour !

juin 2025

Évaluations

8 devoirs

Enseigné en Anglais

Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

 logos de Petrobras, TATA, Danone, Capgemini, P&G et L'Oreal

Il y a 7 modules dans ce cours

In this module, we will explore the pivotal role of data as the foundation for machine learning algorithms. We begin by discussing the significance of large datasets in training deep learning models as these datasets are crucial for the models’ successful application and effectiveness. We will also delve into the challenges associated with small datasets, particularly in sensitive fields such as healthcare and defense, where data acquisition is often difficult, costly, or subject to stringent privacy and security regulations. To address these challenges, the course will introduce various strategies for making the most of limited data, including data-efficient machine learning techniques and the use of synthetic data augmentation. Additionally, we will present the course structure and discuss a curated selection of research papers that align with and enrich our course topics.

Inclus

2 vidéos13 lectures1 devoir

In this module, we will delve into the core aspects of machine learning with a focus on the importance of data, particularly in deep learning applications. We start by emphasizing how large datasets are essential for training deep learning models effectively, as they enable the models to capture and learn from complex patterns, improving their overall performance. Additionally, we'll explore the intersection of data availability, computational power, and model capacity, highlighting how these elements interact to refine model accuracy and efficiency. Furthermore, the module will cover computing advancements beyond Moore's Law and their impact on machine learning, illustrating how modern hardware like CPUs, GPUs, and TPUs enhance computational capabilities critical for training sophisticated models. We'll also delve into scaling laws in deep learning, discussing empirical findings that show how model performance improves predictably with increases in dataset size and model complexity, although with diminishing returns. To provide a deeper theoretical foundation, we'll examine the Vapnik-Chervonenkis (VC) theory, which offers insights into how learning curves and model complexity relate to a model’s ability to generalize from training data. This discussion will extend to practical applications and theoretical limitations, helping to frame machine learning challenges in terms of data sufficiency, model fitting, and the balance between bias and variance. By the end of this module, students will have a thorough understanding of the dynamic interplay between these factors and their implications for machine learning practice and research.

Inclus

1 vidéo19 lectures2 devoirs1 élément d'application

In this module, we’ll explore transfer learning and its role in data-efficient machine learning, where models leverage knowledge from previous tasks to improve performance on new, related tasks. We’ll also cover various types of transfer learning, including transductive, inductive, and unsupervised methods, each addressing different challenges and applications. We’ll discuss some practical steps for implementing transfer learning, such as selecting and fine-tuning pre-trained models, to reduce reliance on large datasets. We’ll also examine data-driven and physics-based simulations for data augmentation, highlighting their use in enhancing training under constrained conditions. Finally, we’ll review key papers on transfer learning techniques to address data scarcity and improve model performance.

Inclus

1 vidéo15 lectures1 devoir

In this module, you'll explore the concept of domain adaptation, a key aspect of transductive transfer learning. Domain adaptation helps you train models that perform well on a target domain, even when its data distribution differs from the source domain. You'll learn about the challenges of domain shift and labeled data scarcity and how these can impact model performance. We'll cover different types of domain adaptation, including unsupervised, semi-supervised, and supervised approaches. You'll also dive into techniques like Deep Domain Confusion (DDC), which integrates domain confusion loss into neural networks to create domain-invariant features. Additionally, you'll discover advanced methods such as Domain-Adversarial Neural Networks (DANNs), Correlation Alignment (CORAL), and Deep Adaptation Networks (DANs) that build on DDC to enhance domain adaptation by aligning feature distributions and capturing complex dependencies across network layers.

Inclus

1 vidéo10 lectures1 devoir

In this module, we’ll explore weak supervision, a technique for training machine learning models with limited, noisy, or imprecise labels. You'll learn about different types of weak supervision and why they are crucial in small data domains. We’ll cover techniques such as semi-supervised learning, self-supervised learning, and active learning, along with advanced methods such as Temporal Ensembling and the Mean Teacher approach. Additionally, you'll discover Bayesian deep learning and active learning strategies to improve training efficiency. Finally, you'll see real-world applications in fields like medical imaging, NLP, fraud detection, autonomous driving, and biology.

Inclus

1 vidéo8 lectures1 devoir

In this module, you'll explore how Zero-Shot Learning (ZSL) enables models to recognize new categories without having seen any examples of those categories during training. This is achieved by leveraging intermediate semantic descriptions, such as attributes, shared between seen and unseen classes. You'll also learn about the importance of regularization in preventing overfitting and improving generalization, as well as how generative models like GANs and VAEs enhance ZSL by synthesizing unseen class data. Additionally, we'll examine Generalized Zero-Shot Learning (GZSL), which tests models on both seen and unseen classes, making the task more challenging and realistic. By the end of this module, you'll have a solid understanding of how ZSL and its extensions can be applied to various machine learning tasks.

Inclus

1 vidéo9 lectures1 devoir

This module focuses on Few-Shot Learning (FSL), a critical paradigm in machine learning that enables models to classify new examples with only a small number of labeled instances. Unlike traditional deep learning models that require vast amounts of labeled data, FSL mimics the human ability to generalize from limited examples, making it highly useful for tasks like image classification, object detection, and natural language processing (NLP). The lecture introduces Matching Networks, a metric-based learning approach designed to solve one-shot learning problems by learning a similarity function that maps new examples to previously seen labeled instances. Students will gain an in-depth understanding of how nearest-neighbor approaches, differentiable embedding functions, and attention mechanisms help in optimizing few-shot learning models. Through discussions, theoretical formulations, and real-world applications, this lecture equips students with practical insights into how AI can function effectively in data-scarce environments.

Inclus

1 vidéo7 lectures1 devoir

Obtenez un certificat professionnel

Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.

Instructeur

Sarah Ostadabbas
Northeastern University
1 Cours26 apprenants

Offert par

En savoir plus sur Machine Learning

Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?

Felipe M.
Étudiant(e) depuis 2018
’Pouvoir suivre des cours à mon rythme à été une expérience extraordinaire. Je peux apprendre chaque fois que mon emploi du temps me le permet et en fonction de mon humeur.’
Jennifer J.
Étudiant(e) depuis 2020
’J'ai directement appliqué les concepts et les compétences que j'ai appris de mes cours à un nouveau projet passionnant au travail.’
Larry W.
Étudiant(e) depuis 2021
’Lorsque j'ai besoin de cours sur des sujets que mon université ne propose pas, Coursera est l'un des meilleurs endroits où se rendre.’
Chaitanya A.
’Apprendre, ce n'est pas seulement s'améliorer dans son travail : c'est bien plus que cela. Coursera me permet d'apprendre sans limites.’
Coursera Plus

Ouvrez de nouvelles portes avec Coursera Plus

Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.

Faites progresser votre carrière avec un diplôme en ligne

Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne

Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires

Améliorez les compétences de vos employés pour exceller dans l’économie numérique

Foire Aux Questions