This project-based course equips learners with the skills to design, develop, and implement a personalized book recommendation system using Python. Spanning two core modules, the course introduces foundational concepts of collaborative and content-based filtering and builds toward a functional hybrid model. Learners will begin by analyzing user data, constructing user-item interaction matrices, and evaluating baseline models. They will then apply advanced data handling techniques using libraries like Pandas and NumPy, and integrate multiple recommendation strategies into a single hybrid engine.



Project on Recommendation Engine - Advanced Book Recommender
Ce cours fait partie de Spécialisation Mastering Recommendation Systems with Python

Instructeur : EDUCBA
Inclus avec
Expérience recommandée
Compétences que vous acquerrez
- Catégorie : Unsupervised Learning
- Catégorie : Exploratory Data Analysis
- Catégorie : Machine Learning Algorithms
- Catégorie : Applied Machine Learning
- Catégorie : Pandas (Python Package)
- Catégorie : Python Programming
- Catégorie : Data Processing
- Catégorie : Scalability
- Catégorie : NumPy
- Catégorie : Data Manipulation
- Catégorie : Predictive Modeling
Détails à connaître

Ajouter à votre profil LinkedIn
juillet 2025
6 devoirs
Découvrez comment les employés des entreprises prestigieuses maîtrisent des compétences recherchées

Élaborez votre expertise du sujet
- Apprenez de nouveaux concepts auprès d'experts du secteur
- Acquérez une compréhension de base d'un sujet ou d'un outil
- Développez des compétences professionnelles avec des projets pratiques
- Obtenez un certificat professionnel partageable

Il y a 2 modules dans ce cours
This module introduces learners to the core structure of a personalized book recommendation system. Starting with foundational project setup, it guides through the logic of accepting user input, handling book data, and establishing a baseline model for evaluation. The module also delves into the preprocessing steps required to make user and book data machine-readable by converting identifiers into indexed forms. Learners will develop an understanding of how to construct a user-item interaction matrix and prepare the data for more advanced recommendation algorithms in future modules.
Inclus
7 vidéos3 devoirs
This module guides learners through the technical implementation of a hybrid recommendation engine by combining collaborative filtering and content-based methods. It begins with foundational data processing using Python libraries like Pandas and NumPy, and progresses toward integrating both filtering approaches into a unified hybrid model. Learners will gain hands-on experience with similarity computation, function-based model construction, and performance refinement through blending multiple data signals.
Inclus
4 vidéos3 devoirs
Obtenez un certificat professionnel
Ajoutez ce titre à votre profil LinkedIn, à votre curriculum vitae ou à votre CV. Partagez-le sur les médias sociaux et dans votre évaluation des performances.
En savoir plus sur Algorithms
- Statut : Essai gratuit
University of Minnesota
EIT Digital
Pour quelles raisons les étudiants sur Coursera nous choisissent-ils pour leur carrière ?





Ouvrez de nouvelles portes avec Coursera Plus
Accès illimité à 10,000+ cours de niveau international, projets pratiques et programmes de certification prêts à l'emploi - tous inclus dans votre abonnement.
Faites progresser votre carrière avec un diplôme en ligne
Obtenez un diplôme auprès d’universités de renommée mondiale - 100 % en ligne
Rejoignez plus de 3 400 entreprises mondiales qui ont choisi Coursera pour les affaires
Améliorez les compétences de vos employés pour exceller dans l’économie numérique
Foire Aux Questions
Access to lectures and assignments depends on your type of enrollment. If you take a course in audit mode, you will be able to see most course materials for free. To access graded assignments and to earn a Certificate, you will need to purchase the Certificate experience, during or after your audit. If you don't see the audit option:
The course may not offer an audit option. You can try a Free Trial instead, or apply for Financial Aid.
The course may offer 'Full Course, No Certificate' instead. This option lets you see all course materials, submit required assessments, and get a final grade. This also means that you will not be able to purchase a Certificate experience.
When you enroll in the course, you get access to all of the courses in the Specialization, and you earn a certificate when you complete the work. Your electronic Certificate will be added to your Accomplishments page - from there, you can print your Certificate or add it to your LinkedIn profile. If you only want to read and view the course content, you can audit the course for free.
If you subscribed, you get a 7-day free trial during which you can cancel at no penalty. After that, we don’t give refunds, but you can cancel your subscription at any time. See our full refund policy.
Plus de questions
Aide financière disponible,